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Abstract : The objective is to find among all partitions of the data set, best publishing according to some 

quality measure. Affinity propagation is a low error, high speed, flexible, and remarkably simple clustering 

algorithm that may be used in forming teams of participants for business simulations and experiential exercises, 

and in organizing participant’s preferences for the parameters of simulations. This paper proposes an efficient 

Affinity Propagation algorithm that guarantees the same clustering result as the original algorithm after 

convergence. The heart of our approach is (1) to prune unnecessary message exchanges in the iterations and (2) 

to compute the convergence values of pruned messages after the iterations to determine clusters. 

 

I. Introduction 
The problem of clustering has been studied widely in the database and statistics literature in the context 

of a wide variety of data mining tasks. The clustering problem is defined to be that of finding groups of similar 

objects in the data. The similarity between the objects is measured with the use of a similarity function. The 

problem of clustering can be very useful in the text domain, where the objects to be clusters can be of different 

granularities such as documents, paragraphs, sentences or terms. Clustering is especially useful for organizing 

documents to improve retrieval and support browsing. There are so many feature selection and transformation 

methods. 

 

1.1 Document Frequency-based Selection 

The simplest possible method for feature selection in document clustering is that of the use of document 

frequency to filter out irrelevant features. While the use of inverse document frequencies reduces the importance 

of such words, this may not alone be sufficient to reduce the noise effects of very frequent words. In other 

words, words which are too frequent in the corpus can be removed because they are typically common words 

such as “a”, “an”, “the”, or “of” which are not discriminative from a clustering perspective. Such words are also 

referred to as stop words. Typically commonly available stop word lists of about 300 to 400 words are used for 

the retrieval process. In addition, words which occur extremely infrequently can also be removed from the 

collection. This is because such words do not add anything to the similarity computations which are used in 

most clustering methods. 

In some cases, such words may be misspellings or typographical errors in documents. Noisy text 

collections which are derived from the web, blogs or social networks are more likely to contain such terms. We 

note that some lines of research define document frequency based selection purely on the basis of very 

infrequent terms, because these terms contribute the least to the similarity calculations. However, it should be 

emphasized that very frequent words should also be removed, especially if they are not discriminative between 

clusters. Note that the TF-IDF weighting method can also naturally filter out very common words in a “soft” 

way. Clearly, the standard set of stop words provide a valid set of words to prune. Nevertheless, we would like a 

way of quantifying the importance of a term directly to the clustering process, which is essential for more 

aggressive pruning. We will discuss a number of such methods below. 

 

1.2. Term Strength 

The core idea of this approach is to extend techniques which are used in supervised learning to The 

unsupervised case. The term strength is essentially used to measure how informative a word is for identifying 

two related documents. For example, for two related documents x and y, the term strength s(t) of term t is 

defined in terms of the following probability: 

s(t) = P(t _ y|t _ x)------- (1) 

 

Clearly, the main issue is how one might define the document x and y as related. One possibility is to use 

manual (or user) feedback to define when a pair of document are related. This is essentially equivalent to 

utilizing supervision in the feature selection process, and may be practical in situations in which predefined 

categories of documents are available. On the other hand, it is not practical to manually create related pairs in 
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large collections in a comprehensive way. It is therefore desirable to use an automated and purely unsupervised 

way to define the 

concept of when a pair of documents is related. A pair of documents are defined to be related if their cosine 

similarity is above a user-defined threshold. In such cases, the term strength s(t)can be defined by randomly 

sampling a number of pairs of such related documents as follows: 

 

s(t) =Number of pairs in which t occurs in both / Number of pairs in which t occurs in the first of the pair (2) 

Here, the first document of the pair may simply be picked randomly. In order to prune features, the 

term strength may be compared to the expected strength of a term which is randomly distributed in the training 

documents with the same frequency. If the term strength of t is not at least two standard deviations greater than 

that of the random word, then it is removed from the collection. 

 

1.3. Similarity Measures 

Before clustering, a similarity/distance measure must be determined. The measure reflects the degree of 

closeness or separation of the target objects and should correspond to the characteristics that are believed to 

distinguish the clusters embedded in the data. In many cases, these characteristics are dependent on the data or 

the problem context at hand, and there is no measure that is universally best for all kinds of clustering problems. 

Moreover, choosing an appropriate similarity measure is also crucial for cluster analysis, especially for a 

particular type of  clustering algorithms. Density-based clustering finds clusters as dense areas in the data set, 

and the density of a given point is in turn estimated as the closeness of the corresponding data object to its 

neighboring objects. Recalling that closeness is quantified as the distance/similarity value, we can see that large 

number of distance/similarity computations are required for finding dense areas and estimate cluster assignment 

of new data objects. Therefore, understanding the effectiveness of different measures is of great importance in 

helping to choose the best one. 

Euclidean distance is a standard metric for geometrical problems. It is the ordinary distance between two points 

and can be easily measured with a ruler in two- or three-dimensional space. Euclidean distance is widely used in 

clustering problems, including clustering text. It satisfies all the above four conditions and therefore is a true 

metric. It is also the default distance measure used with the K-means algorithm. Measuring distance between 

text documents, given two documents da and db represented by their term vectors and tb respectively, the 

Euclidean distance of the two documents is defined as 

Where the term set is T = {t1, . . . , tm}. As mentioned previously, we use the tf idf value as term weights. 

Affinity Propagation is derived as an application of the max-sum algorithm in a factor graph ,i.e., it 

searches for the minima of an energy function on the basis of message passing between data points [7]. The 

clustering performance depends on the similarity measure and message updating frequency. For its simplicity, 

general applicability, and good performance, AP has already been used in text clustering. By using AP to 

preprocess texts, Maet al. developed an incremental method [11] for text clustering. Wang et al. combined AP 

with a parallel strategy for e-learning resources clustering [12]. However, they used AP only as an unsupervised 

algorithm and did not consider any structural information derived from the specific documents. For text mining 

tasks, the majority of state-of-the-art frameworks employ the vector space model (VSM), which treats a 

document as a bag of words and uses plain language words as features [13], [14].  

This model can represent the text mining problems easily and directly. However, with the increase of data 

set size, the vector space becomes high dimensional, sparse, and the computational complexity grows 

exponentially. Moreover, in many practical applications, completely unsupervised learning is lacking relevant 

information. On the other hand, supervised learning needs an initial large number of class label information, 

which requires expensive human labor and time [15], [16]. Therefore, in recent years, semi supervised learning 

has captured a great deal of attentions [17], [18], [19], [20], [21]. Semi supervised learning is a machine learning 

paradigm in which the model is constructed using both labeled and unlabeled data for training—typically a 

small amount of labeled data and a large amount of unlabeled data [16], [22]. To examine the effectiveness of 

the proposed method, we have applied it to the benchmark data set Reuters-21578. In order to analyze the 

behavior of the new algorithm (and also the impact of the two individual proposed contributions),we have 

performed a detail comparison with four clustering methods on the same data set, namely, 

1. K-Mediods Approach 

2.Fast Algorithm of Affinity Propagation Approach. 

 

II. Related Work 
2.1. Affinity Propagation 

Affinity Propagation is a clustering algorithm that identifies a set of ‟exemplars‟ that represents the 

dataset [Freyand Dueck, 2007]. The input of Affinity Propagation is the pair-wise similarities between each pair 

of data points, s[i, j](i, j = 1, 2, . . .,N) 1. Any type of similarities is acceptable, e.g. negative Euclidean distance 
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for real valued data and Jaccard coefficient for non-metric data, thus Affinity Propagation is widely applicable. 

Given similarity matrix s[i, j], Affinity Propagation attempts to find the exemplars that maximize the net 

similarity, i.e. the overall sum of similarities between all exemplars and their member data points.  

The process of Affinity Propagation can be viewed as a message passing process with two kinds of 

messages exchanged among data points: responsibility and availability. Responsibility, r[i, j], is a message from 

data point i to j that reflects the accumulated evidence for how well-suited data point j is to serve as the 

exemplar for data point i. Availability, a[i, j], is a message from data point j to i that reflects the accumulated 

evidence for how appropriate it would be for data point i to choose data point j as its exemplar. All 

responsibilities and availabilities are set to0 initially, and their values are iteratively updated as follows to 

compute convergence values: 

 

r[i, j] = (1 − λ)ρ[i, j] + λr[i, j] 

a[i, j] = (1 − λ)α[i, j] + λa[i, j](2) 

 

Where λ is a damping factor introduced to avoid numerical oscillations, and ρ[i, j] and α[i, j] are, 

we call, propagating responsibility and propagating availability, respectively. ρ[i, j]and α[i, j] are computed. 

 

That is, messages between data points are computed from the corresponding propagating messages. 

The exemplar of data Point i is finally defined as: 

argmax{r[i,j] +α[i,j] : j=1,2…..,N}  (3) 

 

As described above, the original algorithm requires O(N2T ) time to update massages, where N and T 

are the number of data points and the number of iterations, respectively. This incurs excessive CPU time, 

especially when the number of data points is large. Therefore, a fast Affinity Propagation algorithm is demanded 

as pointed out in [Jia et al.,2008]. In the existing algorithms for the K-means problem, we find that AP performs 

at least as well as the competing algorithms in terms of quality. However, due to a memory footprint of O(N2), 

the algorithm cannot be applied on datasets where the number of data points N is large. Another reason why AP 

is not very suited for large N is its O(N2) scaling of the runtime per iteration. 

 The K-means algorithm and deterministic annealing (DA) have a runtime that scales with 

O(NKD).Therefore, when the dimension D and number of clusters K is small, DA and K-means have a much 

lower runtime. We observe, that AP‟s runtime is mostly independent of the dimension D and the number of 

clusters K. That means, when K and D is large, e.g K = 50 and D = 100,AP can be much faster than K-means 

algorithm and DA.  

Also, the K-means algorithm is not only slow for large K but has severe problems to find good 

solutions. Hence, AP works well in settings where the K-means algorithm has problems. Compared to 

hierarchical clustering algorithms, e.g. Ward‟s method, AP generally runs much slower. When clusters are well-

defined and there is only little noise in the dataset, the performance is comparable. If that is not the case, AP 

finds better solutions.  

 

III. Proposed System 
 

3.1. K-Nearest neibourhood algorithm 

The theorem presented in the last section shows sufficient conditions under which clustering can be 

performed consistently. Now we want to present a generic algorithm which can be used to minimize arbitrary 

clustering objective functions. With help of Theorem 1 we can then prove the consistency of its results for a 

large variety of clustering objective functions. 

 

We have seen that the key to obtain consistent clustering schemes is to work with an appropriate Function 

class. But of course, given quality functions Q and Qn, the question is how such a function space can be 

constructed in practice. Essentially, three requirements have to be satisfied: 

 The function space Fn has to be “small”. Ideally, it should only contain polynomial functions. 

 The function space Fn should be “rich enough”. In the limit n → ∞, we would like to be able to 

approximate any (reasonable) measurable function. 

 We need to be able to solve the optimization problem argmin f∈FnQn(f). 

 

This sounds trivial at first glance, but in practice is far from easy. One rather straightforward way to 

achieve all requirements is to use a function space of piecewise constant functions. Given a partitioning of the 

data space in small cells, we only look at clustering‟s which are constant on each cell (that is, the clustering 
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never splits a cell). If we make sure that the number of cells is only of the order log(n), then we know that the 

number of clustering is at most Klog(n) = nlog(K) , which is polynomial in n. In the following we will introduce 

a data-dependent random partition of the space which turns out to be very convenient.  

We will construct a function class Fn as follows. Given a finite sample X1,...,Xn ∈Rd, the number K of 

clusters to construct, and a number m ∈N with K ≤ m ≪ n, randomly pick a subset of m “seed points” 

Xs1,...,Xsm. Assign all other data points to their closest seed points, that is for all j = 1,...,m define the set Zj as 

the subset of data points whose nearest seed point is Xsj. In other words, the sets Z1,...,Zm are the Verona cells 

induced by the seeds Xs1 ,...,Xsm . Then consider all partitions of Xn which are constant on all the sets 

Z1,...,Zm. More formally, for given seeds we define the set Fn as the set of all functions. 

Obviously, the function class Fn contains Km functions, which is polynomial in n if the number m of 

seeds satisfies m ∈ O(logn). Given Fn, the most simple polynomial-time optimization algorithm is then to 

evaluate Qn(f) for all f ∈ Fn and choose the solution fn = argmin f∈Fn Qn(f). We call the resulting clustering the 

nearest neighbor clustering and denote it by NNC(Qn). The entire algorithm is summarized in Figure 1. We have 

already published results on the empirical performance. 
 

3.2.Nearest Neighbor Clustering NNC(Qn), naive implementation 

Parameters: number K of clusters to construct, number m ∈N of seed points to use (with K ≤ m ≪ n), 

clustering quality function Qn 

Input: data set Xn = {X1,...,Xn}, distances di j = d(Xi,Xj) 

 Subsample m seed points from the data points, without replacement. 

 Build the Voronoi decomposition Z1,...,Zm of Xn based on the distances di j using the seed points as 

centers. 

 Define Fn :={f : Xn → {1,...,K} | f constant on all cells Zj 

 For all f ∈ Fn evaluate Qn(f). 

Output: fn := argmin f∈FnQn(f) 
 

A. Fast Seeds Affinity Propagation 

For resolving the computation time issue of the original Affinity Propagation algorithm, Jia et al. recently 

proposed FSAP[Jia et al., 2008]. One promising idea for improving the speed of Affinity Propagation is to 

reduce the number of message values that need to be computed. FSAP aims to reflect this idea as follows. The 

first stage of FSAP constructs a K-nearest neighbor graph. If data point i is among the K data points that have 

the largest similarity with data point j, then data point i and j are connected by an edge, otherwise not. Since 

FSAP performs message transmissions on the K nearest neighbor graph, too many exemplars (at least N/K) 

might be generated. Therefore, in order to merge multiple exemplars into one cluster, the second stage adds 

further edges based on the following three criteria: 

 

1. If data point i is the exemplar of data point j, then data point i and j are connected by an edge; 

2. For two data points i and j, if there exists two data points m and  n that take data point i and j as their 

exemplar, Respectively ,and data point m and n are K-nearest neighbor to each other, and so data point 

i and j are Connected by an edge; and 

3. For two data points i and j, if they are connected by criterion 2, then all data points that choose data 

point I as exemplar are connected to data point j, and vise versa. After convergence, the exemplar of 

data point i is finally determined by Equation (5).They showed that their approach is much faster than 

the original algorithm described in Section 2. However, FSAP is based on heuristic ideas, i.e., the 

linked edges are determined based on K-nearest neighbor approximation and heuristic criteria. 

Therefore, FSAP does not guarantee the same result as the original Affinity Propagation algorithm. Our 

algorithm presented in this paper is faster than FSAP while it still theoretically guarantees the exactness 

of the clustering results after convergence. 
 

Algorithm: 

Input: pair-wise similarities 

Output: exemplars of each data point 

1: for each data point pair [i, j] do 

2: compute a[i, j], r[i, j], and a[i, j] by Equation (5-7); 

3: end for 

4: for each data point pair [i, j] do 

5: if r[i, j]≥0 or a[i, j]+s[i, j]≥max k_=j{a[i, k]+s[i, k]}then 

6: link data point pair [i, j]; 

7: end if 
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8: end for 

9: for t = 1 to T do 

10: for each linked data point pair [i, j] do 

11: update r[i, j] and a[i, j] by Equation (1); 

12: end for 

13: end for 

14: for each unlinked data point pair [i, j] do 

15: compute r[i, j] = ρ[i, j] and a[i, j] = α[i, j]; 

16: end for 

17: for each data point i do 

18: compute exemplar by Equation (4); 

19: end for 
 

IV. Conclusion 
Our Affinity propagation approach improves clustering process. We used K-nearest neighborhood 

method to calculate the distances between the words and then fast affinity propagation used for clustering. It 

reduces unnecessary message exchanges in the iterations, and reduces the convergence values of reduced 

messages from those of un-pruned messages. Experiments show that our algorithm can achieve efficient 

clustering without sacrificing clustering accuracy. Affinity propagation is a low error, high speed, flexible, and 

an easy-to-code clustering algorithm that identifies clusters, exemplars, and outliers. 
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